| 4 Wh | at could | the | missing | numerators | and | denominators | be? | |------|----------|-----|---------|------------|-----|--------------|-----| Write a number in each box to make the statements correct. - a) $\frac{5}{5} < \frac{5}{15}$ d) $\frac{1}{3} < \frac{5}{6}$ g) $\frac{6}{9} < \frac{5}{15}$ - b) $\frac{10}{6} < \frac{5}{12}$ e) $\frac{3}{5} < \frac{5}{2}$ h) $\frac{10}{12} < \frac{5}{2}$ - c) $\frac{1}{12} < \frac{5}{6}$ f) $\frac{5}{6} < \frac{5}{1}$ i) $\frac{23}{24} < \frac{5}{1}$ ## Tommy and Eva are comparing fractions. I found a common denominator of 36 to compare the fractions. Tommy I found a common numerator of 4 to compare the fractions. Eva Whose method is more efficient? _ Write the fractions in ascending order. a) $\frac{2}{5}$, $\frac{2}{7}$, $\frac{2}{3}$, $\frac{2}{4}$, $\frac{2}{10}$ **b)** $$\frac{2}{3}$$, $\frac{5}{9}$, $\frac{1}{9}$, $\frac{5}{6}$, $\frac{2}{9}$ c) $$\frac{3}{5}$$, $\frac{7}{10}$, $\frac{1}{2}$, $\frac{3}{10}$, $\frac{1}{5}$ d) $$\frac{3}{8}$$, $\frac{6}{17}$, $\frac{12}{30}$, $\frac{2}{7}$, $\frac{1}{3}$