4 Wh	at could	the	missing	numerators	and	denominators	be?

Write a number in each box to make the statements correct.

- a) $\frac{5}{5} < \frac{5}{15}$ d) $\frac{1}{3} < \frac{5}{6}$ g) $\frac{6}{9} < \frac{5}{15}$

- b) $\frac{10}{6} < \frac{5}{12}$ e) $\frac{3}{5} < \frac{5}{2}$ h) $\frac{10}{12} < \frac{5}{2}$

- c) $\frac{1}{12} < \frac{5}{6}$ f) $\frac{5}{6} < \frac{5}{1}$ i) $\frac{23}{24} < \frac{5}{1}$

Tommy and Eva are comparing fractions.

I found a common denominator of 36 to compare the fractions.

Tommy

I found a common numerator of 4 to compare the fractions.

Eva

Whose method is more efficient? _

Write the fractions in ascending order.

a) $\frac{2}{5}$, $\frac{2}{7}$, $\frac{2}{3}$, $\frac{2}{4}$, $\frac{2}{10}$

b)
$$\frac{2}{3}$$
, $\frac{5}{9}$, $\frac{1}{9}$, $\frac{5}{6}$, $\frac{2}{9}$

c)
$$\frac{3}{5}$$
, $\frac{7}{10}$, $\frac{1}{2}$, $\frac{3}{10}$, $\frac{1}{5}$

d)
$$\frac{3}{8}$$
, $\frac{6}{17}$, $\frac{12}{30}$, $\frac{2}{7}$, $\frac{1}{3}$

